对任何自闭症谱系疾病的筛选是一种复杂的过程,通常涉及行为观察和基于问卷的测试的杂交。通常在受控环境中进行,此过程需要培训的临床医生或精神科医生进行此类评估。在移动平台上的技术进步浪潮中,已经在纳入移动和平板电脑设备上的这种评估时进行了多次尝试。在本文中,我们分析了使用这种筛选测试产生的视频。本文报道了使用观察者与显示屏距离的效果的第一次使用,同时向2-7岁的儿童作为自闭症的行为标记进行感官敏感性测试,在休闲家庭设置中使用如此的潜力很有希望。
translated by 谷歌翻译
In the past few years, Artificial Intelligence (AI) has garnered attention from various industries including financial services (FS). AI has made a positive impact in financial services by enhancing productivity and improving risk management. While AI can offer efficient solutions, it has the potential to bring unintended consequences. One such consequence is the pronounced effect of AI-related unfairness and attendant fairness-related harms. These fairness-related harms could involve differential treatment of individuals; for example, unfairly denying a loan to certain individuals or groups of individuals. In this paper, we focus on identifying and mitigating individual unfairness and leveraging some of the recently published techniques in this domain, especially as applicable to the credit adjudication use case. We also investigate the extent to which techniques for achieving individual fairness are effective at achieving group fairness. Our main contribution in this work is functionalizing a two-step training process which involves learning a fair similarity metric from a group sense using a small portion of the raw data and training an individually "fair" classifier using the rest of the data where the sensitive features are excluded. The key characteristic of this two-step technique is related to its flexibility, i.e., the fair metric obtained in the first step can be used with any other individual fairness algorithms in the second step. Furthermore, we developed a second metric (distinct from the fair similarity metric) to determine how fairly a model is treating similar individuals. We use this metric to compare a "fair" model against its baseline model in terms of their individual fairness value. Finally, some experimental results corresponding to the individual unfairness mitigation techniques are presented.
translated by 谷歌翻译
ML-AS-A-Service继续增长,对非常强大的隐私保证的需求也在继续增长。安全推断已成为潜在的解决方案,其中加密原始图允许推理不向用户向用户揭示用户的输入或模型的权重。例如,模型提供商可以是一家诊断公司,该公司已经培训了一种最先进的Densenet-121模型来解释胸部X射线,并且用户可以在医院成为患者。尽管对于这种环境,确保推理原则上是可行的,但没有现有的技术使其大规模实用。 Cryptflow2框架提供了一种潜在的解决方案,其能力自动,正确地将清晰文本推理转换为安全模型的推断。但是,从Cryptflow2产生的安全推断在不切实际上很昂贵:在Densenet-121上解释单个X射线需要几乎3TB的通信。在本文中,我们解决了针对三项贡献的安全推断效率低下的重大挑战。首先,我们证明安全推理中的主要瓶颈是大型线性层,可以通过选择网络骨干的选择来优化,并使用用于有效的清晰文本推理开发的操作员。这一发现和强调与许多最近的作品偏离,这些作品着重于在执行较小网络的安全推断时优化非线性激活层。其次,基于对瓶颈卷积层的分析,我们设计了一个更有效的倒入替代品的X操作器。第三,我们表明,快速的Winograd卷积算法进一步提高了安全推断的效率。结合使用,这三个优化被证明对在CHEXPERT数据集中训练的X射线解释问题非常有效。
translated by 谷歌翻译
社交媒体的自杀意图检测是一种不断发展的研究,挑战了巨大的挑战。许多有自杀倾向的人通过社交媒体平台分享他们的思想和意见。作为许多研究的一部分,观察到社交媒体的公开职位包含有价值的标准,以有效地检测有自杀思想的个人。防止自杀的最困难的部分是检测和理解可能导致自杀的复杂风险因素和警告标志。这可以通过自动识别用户行为的突然变化来实现。自然语言处理技术可用于收集社交媒体交互的行为和文本特征,这些功能可以传递给特殊设计的框架,以检测人类交互中的异常,这是自杀意图指标。我们可以使用深度学习和/或基于机器学习的分类方法来实现快速检测自杀式思想。出于这种目的,我们可以采用LSTM和CNN模型的组合来检测来自用户的帖子的这种情绪。为了提高准确性,一些方法可以使用更多数据进行培训,使用注意模型提高现有模型等的效率。本文提出了一种LSTM-Incription-CNN组合模型,用于分析社交媒体提交,以检测任何潜在的自杀意图。在评估期间,所提出的模型的准确性为90.3%,F1分数为92.6%,其大于基线模型。
translated by 谷歌翻译
社交媒体,职业运动和视频游戏正在推动实时视频流的快速增长,在抽搐和YouTube Live等平台上。自动流媒体经验非常易于短时间级网络拥塞,因为客户端播放缓冲区通常不超过几秒钟。不幸的是,识别这些流和测量他们的QoE进行网络管理是具有挑战性的,因为内容提供商在很大程度上使用相同的交付基础设施来用于实时和视频点播(VOD)流,并且不能提供数据包检查技术(包括SNI / DNS查询监控)始终区分两者。在本文中,我们设计,构建和部署康复:基于网络级行为特征的实时视频检测和QoE测量的机器学习方法。我们的贡献是四倍:(1)我们从抽搐和YouTube分析约23,000个视频流,并在其流量配置文件中识别区分实时和按需流的关键功能。我们将我们的交通迹线释放为公众的开放数据; (2)我们开发基于LSTM的二进制分类器模型,该模型将Live从按需流实时区分,在提供商的高度超过95%的准确度; (3)我们开发了一种方法,估计实时流动流动的QoE度量,分辨率和缓冲率分别分别为93%和90%的总体精度; (4)最后,我们将我们的解决方案原型,将其培训在实验室中,并在服务于7,000多名订阅者的Live ISP网络中部署它。我们的方法提供了ISP,具有细粒度的可视性,进入实时视频流,使它们能够测量和改善用户体验。
translated by 谷歌翻译
福利价值最近成为解释复杂和简单机器学习模型的预测的流行方式。本文讨论了影响福芙价值的因素。特别是,我们探讨了特征的分布与其福利价值之间的关系。我们通过讨论来自同一模型的不同预测结果的福利解释所产生的差异来扩展我们的分析。我们的评估是特定特征的福利价值不仅取决于其预期的平均值,而且在其他时刻,如方差,以及基线预测的分歧,对诸如概率等不同结果的迹象和最重要的特征,使用相同的线性概率模型(Logit / Probit)产生的二进制决定。这些分歧不仅始于本地解释性,而且影响全球特征重要性。我们得出结论,给定模型没有独特的福芙解释。它随着模型结果而变化(概率/ log-odds /二进制决定,例如接受VS拒绝),因此模型应用程序。
translated by 谷歌翻译
已经开发了许多方法,以通过消除社交媒体平台的庸俗,令人反感和激烈的评论来监测现代岁月中的消极性传播。然而,存在相对较少的研究,这些研究会收敛于拥抱积极性,加强在线论坛中的支持性和放心内容。因此,我们建议创建英国kannada希望语音数据集,Kanhope并比较几个实验来基准数据集。 DataSet由6,176个用户生成的评论组成,代码混合kannada从YouTube刮擦并手动注释为轴承希望语音或不希望的演讲。此外,我们介绍了DC-BERT4HOPE,一种使用Kanhope的英语翻译进行额外培训的双通道模型,以促进希望语音检测。该方法实现了0.756的加权F1分数,更好的其他模型。从此,卡霍普旨在促进坎卡达的研究,同时促进研究人员,以鼓励,积极和支持的在线内容中务实的方法。
translated by 谷歌翻译